Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577774

RESUMO

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Assuntos
Polietileno , Poluentes Químicos da Água , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos , Silicones
2.
J Hazard Mater ; 469: 133778, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460255

RESUMO

Information on the indoor environment as a source of exposure with potential adverse health effects is mostly limited to a few pollutant groups and indoor types. This study provides a comprehensive toxicological profile of chemical mixtures associated with dust from various types of indoor environments, namely cars, houses, prefabricated apartments, kindergartens, offices, public spaces, and schools. Organic extracts of two different polarities and bioaccessible extracts mimicking the gastrointestinal conditions were prepared from two different particle size fractions of dust. These extracts were tested on a battery of human cell-based bioassays to assess endocrine disrupting potentials. Furthermore, 155 chemicals from different pollutant groups were measured and their relevance for the bioactivity was determined using concentration addition modelling. The exhaustive and bioaccessible extracts of dust from the different microenvironments interfered with aryl hydrocarbon receptor, estrogen, androgen, glucocorticoid, and thyroid hormone (TH) receptor signalling, and with TH transport. Noteably, bioaccessible extracts from offices and public spaces showed higher estrogenic effects than the organic solvent extracts. 114 of the 155 targeted chemicals were detectable, but the observed bioactivity could be only marginally explained by the detected chemicals. Diverse toxicity patterns across different microenvironments that people inhabit throughout their lifetime indicate potential health and developmental risks, especially for children. Limited data on the endocrine disrupting potency of relevant chemical classes, especially those deployed as replacements for legacy contaminants, requires further study.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Criança , Humanos , Poeira/análise , Sistema Endócrino , Estrogênios , Androgênios , Poluição do Ar em Ambientes Fechados/análise
3.
Environ Sci Pollut Res Int ; 30(58): 122470-122481, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968489

RESUMO

Diffusive hydrogel-based passive sampler (HPS) based on diffusive gradients in thin films (DGT) is designed for monitoring polar organic contaminants in the aquatic environment. DGT technique controls the compound's overall uptake rate by adding a hydrogel layer of known thickness, which minimizes the importance of the resistive water boundary layer in the compound uptake process. In this work, we investigated several factors which may influence the diffusion of a range of aquatic contaminants in 1.5% agarose hydrogel. Diffusion in hydrogel was tested using the sheet stacking method. We demonstrated that a thin nylon netting incorporated into the diffusive hydrogel for mechanical strengthening does not significantly affect the diffusion of 11 perfluoroalkyl compounds. Further, we investigated the effect of pH in the range from 3 to 11 on the diffusion of a range of 39 aromatic amines (AAs) -36 aromatic, 2 aliphatic, and azobenzene in hydrogel. AAs were chosen as representatives of compounds with pH-dependent dissociation in water. Analysis of variance showed no significant difference in mean diffusion coefficient log D value at five pH values. The demonstration that the diffusion coefficient D and thus the sampling rate Rs are independent on pH simplifies the interpretation of data from field studies because we can neglect the influence of pH on the Rs. log D values (m2 s-1) of tested AAs ranged from to - 9.77 for 3,3'-dimethylbenzidine to - 9.19 for azobenzene. A negative correlation of log D with molar mass (log M) and molecular volume (log Vm) was observed (R = - 0.57 and - 0.56, respectively). The diffusion coefficient presents a critical parameter for the sampling rate estimation of HPS. Theoretical sampling rates Rs of AAs were calculated for a HPS using the average D values. Theoretical Rs values calculated for AAs at 22°C ranged from 29 mL day-1 for 3,3'-dimethylbenzidine to 106 mL day-1 for 2-aminopyridine. Our calculated values of Rs are in the same range as those already published for a range of low-molecular polar organic contaminants, which supports the possibility of deriving sampler performance parameters in the field from laboratory-derived diffusivity of analytes in hydrogel.


Assuntos
Hidrogéis , Poluentes Químicos da Água , Sefarose , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Difusão , Compostos Azo , Aminas , Água/análise
4.
Sci Total Environ ; 903: 165905, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37532041

RESUMO

The possibilities of expanding a groundwater quality monitoring scheme by passive sampling using polar organic chemical integrative sampler (POCIS) comprising HLB sorbent as the receiving phase were explored. Passive sampling and grab sampling were carried out simultaneously in the regions with vulnerable groundwater resources in Slovakia, between 2013 and 2021. For 27 pesticides and degradation products detected both in POCIS and the grab samples, in situ sampling rates were calculated and statistically evaluated. The limited effectiveness of the receiving phase in POCIS for sampling polar or ionized compounds was confirmed through a comparison of the medians of compound-specific sampling rates. For the majority of the monitored compounds the median sampling rates varied between 0.01 and 0.035 L/day. In some cases, the actual in situ values could be confirmed by parallel exposure of POCIS and silicone rubber sheet employed to obtain a benchmark for maximum attainable sampling rate. Sampling site and sampling period appear to have also some influence on the sampling rates, which was attributed in part to the groundwater velocity varying in both space and time. The influence of physico-chemical parameters (temperature, pH, electrolytic conductivity) remains mostly questionable due to the naturally limited ranges of recorded values over the entire duration of the study. Concentrations of pollutants in POCIS could be used for predicting time weighed average concentrations in water, provided the sampling rates were known and relatively constant. Generally, the compound-specific sampling rate cannot be considered constant due to a combination of naturally varying environmental factors that influence the actual in situ sampling rate. The relative standard deviation of concentration data from POCIS exposed in triplicates varied between approx. 5 %-50 %. Utilizing exploratory data analysis approach and tools enabled us to obtain a relatively complex picture of the situation and progress regarding pesticide pollution of groundwater in the monitored areas.

5.
Environ Int ; 178: 107957, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406370

RESUMO

Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Antagonistas de Androgênios , Ecotoxicologia , Estrona , Rios/química
6.
Environ Sci Technol ; 57(25): 9342-9352, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294896

RESUMO

Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Bifenilos Policlorados/análise , Monitoramento Ambiental/métodos , Hexaclorobenzeno/análise , Água Doce , Poluentes Atmosféricos/análise , Praguicidas/análise , Hidrocarbonetos Clorados/análise
7.
Sci Total Environ ; 892: 164458, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37247727

RESUMO

As Europe's second longest river, the Danube is an important water source for drinking water and irrigation for many countries, before discharging into the Black Sea in the East. Per- and poly-fluoroalkyl substances (PFAS) have been observed over the last two decades in concentrations exceeding the European Union's drinking water guidelines for total sum of 20 select PFAS of 0.1 µg L-1. Their presence is a result of current and historical use and high environmental persistence, necessitating their monitoring for human risk assessments. The aim of this study is to use recently developed passive sampling technology to calculate time-integrated water concentrations and mass loads of 11 select PFAS at 9 sites along the Danube River. Results indicate ∑11 PFAS concentrations in the range of 9.3-29.6 ng L-1 were not in exceedance of EU drinking water guidelines, but perfluorooctanesulfonic acid (PFOS) was in exceedance of the environmental quality standard (0.65 ng L-1) at all sampling locations. The highest ∑11 PFAS mass loads were observed at Ruse (9.5 kg day-1) and Budapest (6.3 kg day-1), believed to be driven by proximity to industrial facilities and large populations (urban runoff). Finally, we estimate 4.9 kg of total PFAS (∑11 PFAS) were delivered to the Black Sea daily over Summer 2019.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Rios , Água Potável/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Ácidos Alcanossulfônicos/análise , Fluorocarbonos/análise , Estações do Ano
8.
Environ Res ; 219: 115105, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549487

RESUMO

Many semi-volatile organic compounds (SVOCs) accumulate in indoor dust, which serves as a repository for those compounds. The presence of SVOCs in indoor environments is of concern because many of them are suspected to have toxic effects. Total SVOC concentrations in the dust are generally used for exposure assessment to indoor contaminants, assuming that 100% of the SVOCs is accessible for human uptake. However, such an assumption may potentially lead to an overestimated risk related to dust exposure. We applied a multi-ratio equilibrium passive sampling (MR-EPS) for estimation of SVOC accessibility in indoor settled dust using silicone passive samplers and three particle size dust fractions, <0.25 mm, 0.25-0.5 mm, and 1-2 mm in dry and wet conditions. Equilibrations were performed at various sampler-dust mass ratios to achieve different degrees of SVOC depletion, allowing the construction of a desorption isotherm. The desorption isotherms provided accessible fractions (FAS), equivalent air concentrations (CAIR), dust-air partition coefficients (KDUST-AIR) and organic carbon-air partition coefficients (KOC-AIR). The highest FAS were observed in the <0.25 mm dust fraction in wet conditions which is relevant for exposure assessment via oral ingestion. The highest CAIR were estimated for several organophosphorus flame retardants (OPFRs), polycyclic aromatic hydrocarbons (PAHs) and synthetic musks. The logKOC-AIR did not differ between dust particle sizes in dry and wet conditions but within compound groups, different relationships with hydrophobicity were observed. Equivalent lipid-based concentrations (CL⇌DUST) calculated using available lipid-silicone partition coefficients (KLIP-SIL) were compared with lipid-based concentrations (CL) measured in human-related samples collected from Europeans. For hexachlorobenzene (HCB), CL⇌DUST, and CL were similar, indicating equilibrium attainment between environment and human samples. Lipid-based concentrations for persistent legacy contaminants were also similar but lower for PBDEs in human samples. Overall, accessibility estimation using MR-EPS in dust further contributes to human risk assessment.


Assuntos
Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Compostos Orgânicos Voláteis , Humanos , Poeira/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Medição de Risco , Retardadores de Chama/análise , Lipídeos , Monitoramento Ambiental
9.
Sci Total Environ ; 864: 161071, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565860

RESUMO

An upscaled passive sampler variant (diffusive hydrogel-based passive sampler; HPS) based on diffusive gradients in thin films for polar organic compounds (o-DGT) with seven times higher surface area (22.7 cm2) than a typical o-DGT sampler (3.14 cm2) was tested in several field studies. HPS performance was tested in situ within a calibration study in the treated effluent of a municipal wastewater treatment plant and in a verification study in the raw municipal wastewater influent. HPS sampled integratively for up to 14 days in the effluent, and 8 days in the influent. Sampling rates (Rs) were derived for 44 pharmaceuticals and personal care products, 3 perfluoroalkyl substances, 2 anticorrosives, and 21 pesticides and metabolites, ranging from 6 to 132 mL d-1. Robustness and repeatability of HPS deteriorated after exposures longer than 14 days due to microbial and physical damage of the diffusive agarose layer. In situ Rs values for the HPS can be applied to estimate the aqueous concentration of the calibrated polar organic compounds in wastewater within an uncertainty factor of four. When accepting this level of accuracy, the HPS can be applied for monitoring trends of organic micropollutants in wastewater.

10.
Environ Pollut ; 318: 120904, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565914

RESUMO

Persistent organic pollutants (POPs) are widely distributed along the world and their levels in surface waters may pose a risk to human health due to consumption of contaminated water or fish long-term exposure to contaminated water. The occurrence of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in the Piedras river (Colombia) is a problem of serious concern since freshwater is conducted to a drinking water supply system that provides more than 3 million users. In this research, we deployed silicone rubber membranes as passive samplers in two sampling campaigns at seven sampling stations selected along the river, to assess sources and spatial variation of POPs. The measurements confirmed freely dissolved concentration of the EPA prioritized PAHs (excluding naphthalene), PCBs, heptachlor isomers, dieldrin, endosulfan isomers, among other POPs at trace levels in the water source. The Risk Quotient (RQ) method was applied to prioritize POPs with the highest potential toxicity over aquatic ecosystems. The OCP Heptachlor overcome RQ, while Dieldrin and Endosulfan, and some PAHs congeners such as Perylene, Pyrene, Benzo[a]pyrene, and Fluoranthene displayed medium-risk RQ. Significant differences between sampling stations assessed by One-way ANOVA suggested that the main PAHs and PCBs sources to the river were the punctual discharge from the WWTP and a leachate discharge form a landfill located in the study area. Additionally, nonpoint sources of OCPs were identified. Our results showed that the origin of PAHs and PCBs are associated with urban activities, while the contribution of OCPs is related to the presence of legacy pesticides from past usage in agricultural activities in the basin.


Assuntos
Água Potável , Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Humanos , Bifenilos Policlorados/análise , Monitoramento Ambiental/métodos , Dieldrin , Endossulfano , Ecossistema , Poluentes Químicos da Água/análise , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Praguicidas/análise , Heptacloro
11.
Environ Sci Technol ; 56(12): 7945-7953, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670489

RESUMO

Hexachlorobenzene (HCB), listed on the Stockholm Convention on persistent organic pollutants and regulated as a hazardous priority pollutant by the Water Framework Directive (WFD), is ubiquitously distributed in the environment and assumed to mildly biomagnify in aquatic foodwebs. The proposal to include trophic magnification factors (TMFs) in the procedure for comparing contaminant levels in biota at different trophic levels (TLs) with WFD environmental quality standards requires adequate selection of TMFs. In the first step of our study, we compared two independently obtained datasets of pentachlorobenzene (PeCB) and HCB concentration ratios from passive sampling (PS) in water and in fish through routine monitoring programs in Norway to evaluate possible biomagnification. In this procedure, PeCB is used for benchmarking the bioconcentration in fish, and the observed HCB/PeCB ratios in fish are compared with ratios expected in the case of (i) HCB bioconcentration or (ii) biomagnification using published TMF values. Results demonstrate that it is not possible to confirm that HCB biomagnifies in fish species that would be used for WFD monitoring in Norway and challenges the proposed monitoring procedures for such compounds in Norwegian or European waters. In the second step, fish-water chemical activity ratios for HCB and PeCB as well as for polychlorinated biphenyls where biota and PS were conducted alongside were calculated and found to rarely exceed unity for cod (Gadus morhua), a fish species with a TL of approximately 4.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Bioacumulação , Monitoramento Ambiental/métodos , Peixes , Cadeia Alimentar , Hexaclorobenzeno/análise , Bifenilos Policlorados/análise , Água , Poluentes Químicos da Água/análise
12.
Environ Pollut ; 302: 119050, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218918

RESUMO

Contamination with hydrophobic organic compounds (HOCs) such as persistent organic pollutants negatively affects global water quality. Accurate and globally comparable monitoring data are required to understand better the HOCs distribution and environmental fate. We present the first results of a proof-of-concept global monitoring campaign, the Aquatic Global Passive Sampling initiative (AQUA-GAPS), performed between 2016 and 2020, for assessing trends of freely dissolved HOC concentrations in global surface waters. One of the pilot campaign aims was to compare performance characteristics of silicone (SSP) and low-density polyethylene (PE) sheets co-deployed in parallel under identical conditions, i.e. at the same site, using the same deployment design, and for an equal period. Individual exposures lasted between 36 and 400 days, and samples were collected from 22 freshwater and 40 marine locations. The sampler inter-comparability is based on a rationale of common underlying principles, i.e. HOC diffusion through a water boundary layer (WBL) and absorption by the polymer. In the integrative uptake phase, equal surface-specific uptake in both samplers was observed for HOCs with a molecular volume less than 300 Å3. For those HOCs, transport in the WBL controls the uptake as mass transfer in the polymer is over 20-times faster. In such a case, sampled HOC mass can be converted into aqueous concentrations using available models derived for WBL-controlled sampling using performance reference compounds. In contrast, for larger molecules, surface-specific uptake to PE was lower than to SSP. Diffusion in PE is slower than in SSP, and it is likely that for large molecules, diffusion in PE limits the transport from water to the sampler, complicating the interpretation. Although both samplers provided mostly well comparable results, we recommend, based on simpler practical handling, simpler data interpretation, and better availability of reliable polymer-water partition coefficients, silicone-based samplers for future operation in the worldwide monitoring programme.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Polietileno/química , Silicones/química , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 29(27): 40954-40963, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35083678

RESUMO

Contamination of aquatic ecosystems by hydrophobic organic contaminants (HOCs) is often assessed based on their concentrations in riverbed sediment and suspended particulate matter (SPM). However, total HOC concentration (CTOT) in sediment or SPM is of limited value for evaluating the exposure of benthic or pelagic organisms. The accessible HOC concentration (CAS) presents a useful parameter quantifying the overall pool of HOC in sediment or SPM available for fast partitioning to the water phase or biota. We applied a novel approach of ex situ sequential equilibrium partitioning with silicone elastomer sampler at a high sampler/SPM phase ratio to measure CAS of HOC in SPM from the Danube River. We compared CTOT and CAS in SPM and surface layer sediment collected at the same sites to evaluate whether HOC monitoring in the two matrices provides equivalent information on environmental quality. At most sites, there was a good agreement and correlation of organic carbon (OC)-normalised CTOT in SPM and sediment for polychlorinated biphenyls (PCBs) and the majority of organochlorine pesticides (OCPs). In contrast, CTOT of polycyclic aromatic hydrocarbons (PAHs) in SPM were up to a factor 10 lower in SPM than in sediment. Site-specific differences of OC-normalised CAS concentrations in SPM and sediments were observed for PCBs and OCPs, with accessibility mostly lower in SPM than in sediment. The highest accessibility in SPM was observed for PCBs, ranging between 15 and 30%. The accessibility of OCPs varied from 0 to 23%. SPM and riverbed sediment samples provide complementary but not mutually interchangeable information on HOC contamination.


Assuntos
Hidrocarbonetos Clorados , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Carbono , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Hidrocarbonetos Clorados/análise , Material Particulado/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Poluentes Químicos da Água/análise
14.
Environ Sci Pollut Res Int ; 29(16): 23323-23337, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34807391

RESUMO

The study showed novel findings about changes in the fate and bioavailability of conazole fungicides (CFs) after biochar (BC) addition to soil. Two contrasting soils (low- and high-sorbing of CF; L soils, H soils) were amended by three BCs (low-, moderate-, and high-sorbing of CF; L-BC, M-BC, H-BC) at 0.2% and 2% doses. Epoxiconazole (EPC) and tebuconazole (TBC) were then added to the soil-BC mixtures, and their degradation, bioaccumulation in earthworms (Eisenia andrei), and bioconcentration in lettuce (Lactuca sativa) were studied for three months. Also, stir bar sorptive extraction (SBSE) was performed to determine CF (bio)accessibility. The EPC and TBC degradation in the soil-BC mixtures followed usually the first-order decay kinetics. The BC addition prevalently decreased the pesticides degradation in the L soil mixtures but often increased it in the H soil mixtures. In general, EPC degraded less than TBC. BC type and dose roles in the pesticides degradation were unclear. The BC addition significantly reduced pesticide uptake to the earthworms in the L soil mixtures (by 37-96%) and in the H soil mixtures (by 6-89%) with 2% BC. The BC addition reduced pesticide uptake to the lettuce roots and leaves significantly-up to two orders of magnitude, and this reduction was strong in H soil mixtures at 2% of BC. The BC addition reduced the CF (bio)accessibility measured by SBSE in all L soil mixtures and some H soil mixtures with 2% BC. Although not significant, it also seems that the pesticide bioaccumulation, bioconcentration, and (bio)accessibility were decreasing according to the BC type (L-BC > M-BC > H-BC). The pesticide concentrations in the earthworms and lettuce correlated significantly to the SBSE results, which indicates this technique as a possible predictor of biotic uptake. Our results showed that the interactions were hard to predict in the complex soil-BC-pesticide system.


Assuntos
Fungicidas Industriais , Oligoquetos , Poluentes do Solo , Animais , Disponibilidade Biológica , Carvão Vegetal/metabolismo , Fungicidas Industriais/análise , Oligoquetos/metabolismo , Solo , Poluentes do Solo/análise
15.
Sci Data ; 8(1): 223, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429429

RESUMO

Non-target analysis (NTA) employing high-resolution mass spectrometry is a commonly applied approach for the detection of novel chemicals of emerging concern in complex environmental samples. NTA typically results in large and information-rich datasets that require computer aided (ideally automated) strategies for their processing and interpretation. Such strategies do however raise the challenge of reproducibility between and within different processing workflows. An effective strategy to mitigate such problems is the implementation of inter-laboratory studies (ILS) with the aim to evaluate different workflows and agree on harmonized/standardized quality control procedures. Here we present the data generated during such an ILS. This study was organized through the Norman Network and included 21 participants from 11 countries. A set of samples based on the passive sampling of drinking water pre and post treatment was shipped to all the participating laboratories for analysis, using one pre-defined method and one locally (i.e. in-house) developed method. The data generated represents a valuable resource (i.e. benchmark) for future developments of algorithms and workflows for NTA experiments.


Assuntos
Benchmarking , Água Potável/análise , Espectrometria de Massas , Algoritmos , Laboratórios , Fluxo de Trabalho
16.
Sci Rep ; 11(1): 11231, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045522

RESUMO

The identification and prioritisation of water bodies presenting elevated levels of anthropogenic chemicals is a key aspect of environmental monitoring programmes. Albeit this is challenging owing to geographical scales, choice of indicator aquatic species used for chemical monitoring, and inherent need for an understanding of contaminant fate and distribution in the environment. Here, we propose an innovative methodology for identifying and ranking water bodies according to their levels of hydrophobic organic contaminants (HOCs) in water. This is based on a unique passive sampling dataset acquired over a 10-year period with silicone rubber exposures in surface water bodies across Europe. We show with these data that, far from point sources of contamination, levels of hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) in water approach equilibrium with atmospheric concentrations near the air/water surface. This results in a relatively constant ratio of their concentrations in the water phase. This, in turn, allows us to (i) identify sites of contamination with either of the two chemicals when the HCB/PeCB ratio deviates from theory and (ii) define benchmark levels of other HOCs in surface water against those of HCB and/or PeCB. For two polychlorinated biphenyls (congener 28 and 52) used as model chemicals, differences in contamination levels between the more contaminated and pristine sites are wider than differences in HCB and PeCB concentrations endorsing the benchmarking procedure.

17.
Chemosphere ; 279: 130536, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33873065

RESUMO

Semivolatile organic compounds (SVOCs) are mostly man-made chemicals that distribute between the gas and solid phase in the environment. Many of them could pose harm to people and therefore it is important to know their concentrations in the indoor environment to evaluate the related risks. Inhalation exposure can be assessed using passive sampling. In this study, we employed silicone elastomer as a passive sampler for monitoring gaseous polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in indoor air. We performed a sampler calibration study in which samplers consisting of 0.5 mm thick silicone sheets with a total surface area of 300 cm2 were exposed to indoor air in a university lecture theatre for up to 56 days. Uptake kinetics of SVOCs was studied by collecting 2 samplers every week. The results were used to develop a model based on mass transfer theory that can be used to estimate the air sampling rate RS as a function of compound's molecular volume. We examined release kinetics of performance reference compounds that covered a broad range of silicone-air partition coefficient (log KSA 5.95-9.49) and investigated a hypothesis of isotropic exchange kinetics, i.e. equality of rate constants for uptake and release, of SVOCs. PCBs and OCPs concentration in air calculated from contaminant amounts accumulated in passive samplers were in good agreement with those determined by active sampling running simultaneously during the entire study. The use of performance reference compounds is suitable for in situ passive sampler calibration.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Calibragem , Monitoramento Ambiental , Humanos , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Silicones
18.
Mar Pollut Bull ; 168: 112375, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33895394

RESUMO

Mapping of hydrophobic organic compounds (HOCs) in surface seawater on an east-to-west transect of the South Atlantic Ocean (SAO) and across the Black Sea (BS) in 2016 was performed by a dynamic passive sampling device containing silicone-based passive samplers. In SAO as well as in BS the measurements confirmed freely dissolved concentrations of polychlorinated biphenyls, DDT and its metabolites, chlorobenzenes, cyclodiene pesticides, and brominated flame retardants in the range of units to low hundreds of pg per litre. The findings indicate that the spatial distribution of HOCs and emerging pollutants in the SAO and the BS is influenced by riverine inputs, ocean currents and atmospheric deposition from continental plumes. Observed concentration gradients indicate that eastern SAO receives DDT from sources in South Africa, whereas the emissions of endosulfan originate in South America. Elevated HOC concentrations in the northwestern BS are related to their discharge by rivers from the European continent.


Assuntos
Praguicidas , Bifenilos Policlorados , Oceano Atlântico , Mar Negro , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Água do Mar , África do Sul , América do Sul
19.
Crit Rev Anal Chem ; 51(1): 20-54, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31597440

RESUMO

We comprehensively review the current state-of-the-art of environmental monitoring for hydrophobic organic contaminants in aqueous matrices using passive sampling devices. Principles of the theory of passive sampling are presented. Strategies for passive sampler design and operation, limitations in performance and data quality-assurance and quality-control are reviewed. Advances in applications of available passive sampling devices are extensively critiqued. Future trends and current challenges facing practitioners and barriers to further adoption of the devices are discussed.


Assuntos
Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção
20.
Environ Pollut ; 269: 116121, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33272798

RESUMO

POCIS is the most widely applied passive sampler of polar organic substances, because it was one of the first commercially available samplers for that purpose on the market, but also for its applicability for a wide range of substances and conditions. Its main weakness is the variability of sampling performance with exposure conditions. In our study we took a pragmatic approach and performed in situ calibration for a set of 76 pharmaceuticals and their metabolites in five sampling campaigns in surface water, covering various temperature and flow conditions. In individual campaigns, RS were calculated for up to 47 compounds ranging from 0.01 to 0.63 L d-1, with the overall median value of 0.10 L d-1. No clear changes of RS with water temperature or discharge could be found for any of the investigated substances. The absence of correlation of experimental RS with physical-chemical properties in combination with the lack of mechanistic understanding of compound uptake to POCIS implies that practical estimation of aqueous concentrations from uptake in POCIS depends on compound-specific experimental calibration data. Performance of POCIS was compared with grab sampling of water in seven field campaigns comprising multiple sampling sites, where sampling by both methods was done in parallel. The comparison showed that for 25 of 36 tested compounds more than 50% of POCIS-derived aqueous concentrations did not differ from median of grab sampling values more than by a factor of 2. Further, for 30 of 36 compounds, more than 80% of POCIS data did not differ from grab sampling data more than by a factor of 5. When accepting this level of accuracy, in situ derived sampling rates are sufficiently robust for application of POCIS for identification of spatial and temporal contamination trends in surface waters.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Calibragem , Monitoramento Ambiental , Compostos Orgânicos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...